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Abstract

We construct a nonlinear finite volume (FV) scheme for diffusion equation on star-shaped polygonal meshes and prove that
the scheme is monotone, i.e., it preserves positivity of analytical solutions for strongly anisotropic and heterogeneous full ten-
sor coefficients. Our scheme has only cell-centered unknowns, and it treats material discontinuities rigorously and offers an
explicit expression for the normal flux. Numerical results are presented to show how our scheme works for preserving posi-
tivity on various distorted meshes for both smooth and non-smooth highly anisotropic solutions. And numerical results show
that our scheme appears to be approximate second-order accuracy for the solution and first-order accuracy for the flux.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Accurate and reliable discretization methods are very important for the numerical simulations of Lagrang-
ian hydrodynamics. Development of a new discrete scheme for diffusion equation should satisfy some desir-
able properties [11], specifically the scheme must

– be locally conservative, or ensure the continuity of the normal flux through cell interfaces;
– be monotone, i.e., preserve positivity of the differential solution or satisfy the discrete maximum principle;
– be reliable on unstructured anisotropic meshes that may be severely distorted;
– allow heterogeneous full diffusion tensors;
– result in a sparse system with minimal number of non-zero entries;
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– have the accuracy that is higher than the first order for smooth solutions;
– have only cell-centered unknowns.

Monotonicity is one of the key requirements to discretization schemes. In the context of anisotropic ther-
mal conduction, the scheme without preserving monotonicity can lead to the violation of the entropy con-
straints of the second law of thermodynamics, causing heat to flow from regions of lower temperature to
higher temperature. In regions of large temperature variations, this can cause the temperature to become neg-
ative. In order to avoid negative temperature, the scheme must be monotone. For the linear cases, the mono-
tonicity is equivalent with the discrete maximum principle. However, for general cases, the discrete maximum
principle is more restrictive than monotonicity.

It is well known that classical finite volume (FV) and finite element (FE) schemes fail to satisfy the discrete
maximum principle for strong anisotropic diffusion tensors and on distorted meshes [7,9,15]. To our knowl-
edge, a linear scheme satisfying all the above requirements is not known. There are several different linear
schemes [1,2,4,5,8,10,13,14,16,18] satisfying one or more requirements above, but not all of them. For exam-
ple, some schemes must impose severe restrictions on the geometry of meshes or diffusion coefficients in order
to satisfy the monotonicity or the discrete maximum principle. Recently, based on repair technique and con-
strained optimization, two approaches have been suggested to enforce discrete maximum principle for linear
finite element solutions of general elliptic equations with self-adjoint operator on triangular meshes in [12].

The criteria for the monotonicity of control volume methods on quadrilateral meshes was derived in [15], and it
was shown that it is impossible to construct linear nine-point methods which unconditionally satisfy the mono-
tonicity criteria when the discretization satisfies local conservation and exact reproduction of linear solution.

On the other hand, a few nonlinear schemes [6,11,17] have been proposed to guarantee monotonicity. A
nonlinear stabilized Galerkin approximation of the Laplace operator has been analyzed in [6] and a nonlinear
FV scheme for highly anisotropic diffusion operators on unstructured triangular meshes has been proposed in
[17]. It was shown in [17] that the scheme is monotone only for parabolic equations and sufficiently small time
steps. The nonlinear FV scheme suggested in [17] has been further developed and analyzed for elliptic prob-
lems in [11], which satisfies the above requirements on triangular meshes. They proved that the scheme is
monotone on triangular meshes for strongly anisotropic and heterogeneous full tensor coefficients, with a spe-
cial choice of collocation points (i.e., cell centers). Moreover, they did not propose a monotone scheme for
anisotropic and heterogeneous full tensor coefficients on general polygonal meshes.

In this paper we will further develop the nonlinear monotone FV schemes, and construct a nonlinear FV
scheme with monotonicity for anisotropic and heterogeneous full tensor coefficients on polygonal meshes. We
will propose an adaptive strategy of constructing discrete flux to guarantee monotonicity on polygonal meshes.
The basic idea is to choose appropriate cell-edge in the derivation of discrete flux expression according to mesh
geometry. Compared with [11], our scheme is monotone for strongly anisotropic and heterogeneous full tensor
coefficients on polygonal meshes, and need not use a specific definition of collocation points. For our scheme, we
can simply take collocation points as the cell centers which are defined in Lagrangian hydrodynamics algorithm
for polygonal meshes. It follows that our scheme avoids a remap from the values on collocation points to those on
cell centers, and would be suitable for coupled radiation diffusion/hydrodynamics calculations on such meshes.
Moreover an alternative interpolation technique is used and compared with other techniques in [11,21].

The remainder of this article is organized as follows. In Section 2 we describe the construction of the non-
linear FV scheme and then prove it is monotone. In Section 3 we extend this scheme to non-stationary diffu-
sion equations. Then in Section 4 we present some numerical results to illustrate the features of the scheme.
Finally some conclusions are given in Section 5.

2. Construction of monotone nonlinear scheme

2.1. Problem and notation

Consider the stationary diffusion problem for unknown u ¼ uðxÞ:

�r � ðjruÞ ¼ f in X; ð2:1Þ
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uðxÞ ¼ g on oX; ð2:2Þ
where X is an open bounded polygonal set of R2 with boundary oX, and j is diffusion tensor (possibly
anisotropic).

In this paper, we use a mesh on X made up of polygons and denote the cell by K or L. And with each cell K

we associate one point (the so-called collocation point or cell center) denoted also by K: the centroid is a qual-
ified candidate but other points can be chosen.

We assume that each polygon is star-shaped with respect to the collocation point, that is any ray emanating
from the cell center K intersects the boundary of cell K at exactly one point. Note that any convex polygon
satisfies the assumption.

Denote the cell vertex by A;B or P 1; P 2; P 3; P 4; . . ., and the cell side by r (see Fig. 2.1). If the cell side r is a
common edge of cells K and L, and its vertices are A and B, then we denote
r ¼ KjL ¼ BA:
Let J be the set of all cells, E be the set of all cell side, and EK be the set of all cell side of cell K. Denote
E int ¼ E \ X, Eext ¼ E \ oX. Denote h ¼ ðsupK2J mðKÞÞ1=2, where mðKÞ is the area of cell K.

We adopt the following notations (see Fig. 2.1).~nKr (resp.~nLr) is the unit outer normal on the edge r of cell
K (resp. L). There holds~nKr ¼ �~nLr for r ¼ K j L.~tKP i and~tLP i are the unit tangential vectors on the line KP i

and LP i (i ¼ 1; 2; . . .), respectively.
Let jT be the transpose of matrix j. The ray originated in the point K along the direction jT~nKr must intersect

one of the cell-side of cell K, and this cell-side is denoted by P 1P 2, and the cross point is O1. Similarly, the ray
originated in the point L along the direction jT~nLr must intersect one of the cell-side of cell L, and we denote
this cell-side by P 3P 4, and the cross point is O2. Let hK1

be the angle between KP 1 and KO1, hK2
be the angle

between KO1 and KP 2, hL1
be the angle between LP 4 and LO2, and hL2

be the angle between LO2 and LP 3. Denote
hK ¼ hK1

þ hK2
, i.e., hK is the angle between KP 1 and KP 2, and hL ¼ hL1

þ hL2
, i.e., hL is the angle between LP 3 and

LP 4. Notice that the polygon is star-shaped, then the three point K, P 1 and P 2 can form a triangle, hK is an inter-
nal angle of the triangle KP 1P 2. Similar, hL is an internal angle of the triangle LP 3P 4. Hence, there are
0 6 hK1
; hK2

; hL1
; hL2

< p;
and
0 < hK ; hL < p:
2.2. Construction of scheme

Integrate (2.1) over the cell K, to obtain
X
r2EK

FK;r ¼
Z

K
f ðxÞdx; ð2:3Þ
Fig. 2.1. Stencil and notation.
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where the continuous flux on the edge r is
FK;r ¼ �
Z

r
jðxÞruðxÞ �~nKrdl: ð2:4Þ
Noticing that
ðjruÞ � m ¼ ru � ðjTmÞ;

we have
FK;r ¼ �
Z

r
ruðxÞ � jðxÞT~nKrdl: ð2:5Þ
Since KP 1 and KP 2 are two edges of the triangle KP 1P 2, the two vectors~tKP 1
and~tKP 2

cannot be collinear (see
Fig. 2.1). Then there is
jT~nKr

jjT~nKrj
¼ sin hK2

sin hK

~tKP 1
þ sin hK1

sin hK

~tKP 2
: ð2:6Þ
Similarly, there is
jT~nLr

jjT~nLrj
¼ sin hL2

sin hL

~tLP 4
þ sin hL1

sin hL

~tLP 3
: ð2:7Þ
Substituting (2.6) into (2.5), we obtain
FK;r ¼ �
Z

r
jjT~nKrj

sin hK2

sin hK
ruðxÞ �~tKP 1

þ sin hK1

sin hK
ruðxÞ �~tKP 2

� �
dl

¼ �jjTðKÞ~nKrjjrj
sin hK2

sin hK

uðP 1Þ � uðKÞ
jKP 1j

þ sin hK1

sin hK

uðP 2Þ � uðKÞ
jKP 2j

� �
þOðh2Þ:
Similarly, we have
F L;r ¼ �
Z

r
jjT~nLrj

sin hL2

sin hL
ruðxÞ �~tLP 4

þ sin hL1

sin hL
ruðxÞ �~tLP 3

� �
dl

¼ �jjTðLÞ~nLrjjrj
sin hL2

sin hL

uðP 4Þ � uðLÞ
jLP 4j

þ sin hL1

sin hL

uðP 3Þ � uðLÞ
jLP 3j

� �
þOðh2Þ:
Let F K;r (F L;r) be the discrete normal flux on edge r of cell K (L,resp.) defined as follows:
F K;r ¼ �jjTðKÞ~nKrjjrj
sin hK2

sin hK

uP 1
� uK

jKP 1j
þ sin hK1

sin hK

uP 2
� uK

jKP 2j

� �
;

F L;r ¼ �jjTðLÞ~nLrjjrj
sin hL2

sin hL

uP 4
� uL

jLP 4j
þ sin hL1

sin hL

uP 3
� uL

jLP 3j

� �
:

By continuity of the normal flux component F K;r ¼ �F L;r, we have
F K;r ¼ �l1jjTðKÞ~nKrjjrj
sin hK2

sin hK

uP 1
� uK

jKP 1j
þ sin hK1

sin hK

uP 2
� uK

jKP 2j

� �

þ l2jjTðLÞ~nLrjjrj
sin hL2

sin hL

uP 4
� uL

jLP 4j
þ sin hL1

sin hL

uP 3
� uL

jLP 3j

� �
;

where l1 and l2 are some coefficients satisfying l1 þ l2 ¼ 1, which will be determined later. The above equa-
tion can be rewritten to
F K;r ¼ l1

jjTðKÞ~nKrjjrj
sinhK

sinhK2

jKP 1j
þ sinhK1

jKP 2j

� �
uK � l2

jjTðLÞ~nLrjjrj
sinhL

sinhL2

jLP 4j
þ sinhL1

jLP 3j

� �
uL

� l1

jjTðKÞ~nKrjjrj
sinhK

sinhK2

jKP 1j
uP 1
þ sinhK1

jKP 2j
uP 2

� �
þ l2

jjTðLÞ~nLrjjrj
sinhL

sinhL2

jLP 4j
uP 4
þ sinhL1

jLP 3j
uP 3

� �
: ð2:8Þ
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In order to obtain the two-point flux approximation, the third and fourth term of the above expression should
be vanished. Hence we choose l1 and l2 such that
l1 þ l2 ¼ 1;

�a1l1 þ a2l2 ¼ 0;

�
ð2:9Þ
where
a1 ¼
jjTðKÞ~nKrjjrj

sin hK

sin hK2

jKP 1j
uP 1
þ sin hK1

jKP 2j
uP 2

� �
;

a2 ¼
jjTðLÞ~nLrjjrj

sin hL

sin hL2

jLP 4j
uP 4
þ sin hL1

jLP 3j
uP 3

� �
:

If a1 þ a2 6¼ 0, then we can obtain
l1 ¼
a2

a1 þ a2

; l2 ¼
a1

a1 þ a2

: ð2:10Þ
If a1 þ a2 ¼ 0, we can take
l1 ¼ l2 ¼
1

2
:

From the definitions of hK1
; hK2

; hL1
; hL2

, hK and hL, we know that
sin hK1
P 0; sin hK2

P 0; sin hL1
P 0; sin hL2

P 0;
and
sin hK > 0; sin hL > 0:
Hence, there are
a1 P 0; a2 P 0;
provided that
uP i P 0; i ¼ 1; 2; 3; 4; . . . ; ð2:11Þ

which imply that
l1 P 0; l2 P 0:
For r ¼ KjL 2 E int, by (2.8) and (2.9), we have
F K;r ¼ l1

jjTðKÞ~nKrjjrj
sin hK

sin hK2

jKP 1j
þ sin hK1

jKP 2j

� �
uK � l2

jjTðLÞ~nLrjjrj
sin hL

sin hL2

jLP 4j
þ sin hL1

jLP 3j

� �
uL

¼ AK;ruK � AL;ruL; ð2:12Þ
where
AK;r ¼ l1

jjTðKÞ~nKrjjrj
sin hK

sin hK2

jKP 1j
þ sin hK1

jKP 2j

� �
¼ l1

jjTðKÞ~nKrjjrj
jKO1j

; ð2:13Þ
and
AL;r ¼ l2

jjTðLÞ~nLrjjrj
sin hL

sin hL2

jLP 4j
þ sin hL1

jLP 3j

� �
¼ l2

jjTðLÞ~nLrjjrj
jLO2j

: ð2:14Þ
Under the condition (2.11), it is obvious that there are
AK;r P 0; AL;r P 0:
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For r � oX \ oK (see Fig. 2.1), the ray originated in the point K along jT n!Kr intersects an edge ~r ¼ P 2P 1

with the cross point O1 2 ~r, where ~r may be r or not, and in this case we define
F K;r ¼ �
jjTðKÞ~nKrjjrj

sin hK

sin hK2

jKP 1j
uP 1
þ sin hK1

jKP 2j
uP 2
� sin hK2

jKP 1j
þ sin hK1

jKP 2j

� �
uK

� �
¼ AK;ruK � aK;r; ð2:15Þ
where
AK;r ¼
jjTðKÞ~nKrjjrj

sin hK

sin hK2

jKP 1j
þ sin hK1

jKP 2j

� �
;

aK;r ¼
jjTðKÞ~nKrjjrj

sin hK

sin hK2

jKP 1j
uP 1
þ sin hK1

jKP 2j
uP 2

� �
:

In the formulae (2.12) and (2.15), if P i lies on oX, then we take uP i ¼ gP i
in the corresponding formula.

In order to ensure the effect of boundary condition, we require there exists at least one edge r � oK
(K \ oX � Eext) such that the ray originated in the cell center K along jT n!Kr intersects one edge ~r satisfying
~r \ oX 6¼ ;. If the above condition is not satisfied, we can obtain the expression of F K;r on boundary similar to
Section 2.3. Hence, we can always ensure the effect of boundary condition.

With the definition of F K;r the finite volume scheme is constructed as follows:
X
r2EK

F K;r ¼ fKmðKÞ; 8K 2 J ; ð2:16Þ

uP i ¼ gP i
; 8P i 2 oX; ð2:17Þ
where fK ¼ f ðKÞ.
It is obvious that the cell center can be defined at any position of a cell in our scheme. The coefficients AK;r

and AL;r depend on the cell vertex unknowns, hence, the scheme is nonlinear.

2.3. Robin boundary conditions

Consider the following robin boundary conditions:
ajru �~mþ bu ¼ g; ð2:18Þ
where~m is the outward unit normal vector of domain X.
Integrate (2.18) on cell-side r 2 oX to obtain
Z

r
ajru �~mþ

Z
r

bu ¼
Z

r
g: ð2:19Þ
Let K be the midpoint of r, then we have
aKFK;r þ jrjbKuK ¼ jrjgK ; ð2:20Þ
where
FK;r ¼
Z

r
jru �~m ¼ �

Z
r

jru �~nK;r:
Next, we discrete the above expression. As the vector jT~m is an outward vector of the domain X, which is
always true due to the physics of the problem, the ray originated in the point K along the direction jT~nKr inter-
sects one of the segments LA and LB (see Fig. 2.2), this segment is denoted by P 1P 2, and the cross point is O1.
In this figure, the points P 1 and L are the same point.



Fig. 2.2. Boundary stencil.
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Similar to Section 2.2, we define
F K;r ¼ �l1jjTðKÞ~nKrjjrj
sin hK2

sin hK

uP 1
� uK

jKP 1j
þ sin hK1

sin hK

uP 2
� uK

jKP 2j

� �

þ l2jjTðLÞ~nLrjjrj
sin hL2

sin hL

uP 4
� uL

jLP 4j
þ sin hL1

sin hL

uP 3
� uL

jLP 3j

� �
;

Noticing that the points P 1 and L are the same point, we can rewrite the above equation to
F K;r ¼ l1

jjTðKÞ~nKrjjrj
sin hK

sin hK2

jKP 1j
þ sin hK1

jKP 2j

� �
uK

� l2

jjTðLÞ~nLrjjrj
sin hL

sin hL2

jLP 4j
þ sin hL1

jLP 3j

� �
þ l1

jjTðKÞ~nKrjjrj
sin hK

sin hK2

jKLj

� �
uL

� l1

jjTðKÞ~nKrjjrj
sin hK

sin hK1

jKP 2j
uP 2
þ l2

jjTðLÞ~nLrjjrj
sin hL

sin hL2

jLP 4j
uP 4
þ sin hL1

jLP 3j
uP 3

� �
: ð2:21Þ
In order to obtain the two-point flux approximation, these terms including the values of vertex in the
expression (2.21) should be vanished. Hence, we choose l1 and l2 such that
l1 þ l2 ¼ 1;

�a1l1 þ a2l2 ¼ 0;

�
ð2:22Þ
where
a1 ¼
jjTðKÞ~nKrjjrj

sin hK

sin hK1

jKP 2j
uP 2
;

a2 ¼
jjTðLÞ~nLrjjrj

sin hL

sin hL2

jLP 4j
uP 4
þ sin hL1

jLP 3j
uP 3

� �
:

If a1 þ a2 6¼ 0, then we can obtain
l1 ¼
a2

a1 þ a2

; l2 ¼
a1

a1 þ a2

: ð2:23Þ
If a1 þ a2 ¼ 0, we can take
l1 ¼ l2 ¼
1

2
:

Similar to the Section 2.2, we can see that
a1 P 0; a2 P 0;
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provided that
uP i P 0; i ¼ 2; 3; 4; . . . ð2:24Þ
Hence, there are
l1 P 0; l2 P 0:
By (2.21) and (2.22), we get
F K;r ¼ AK;ruK � AL;ruL; ð2:25Þ

where
AK;r ¼ l1

jjTðKÞ~nKrjjrj
sin hK

sin hK2

jKP 1j
þ sin hK1

jKP 2j

� �
; ð2:26Þ
and
AL;r ¼ l2

jjTðLÞ~nLrjjrj
sin hL

sin hL2

jLP 4j
þ sin hL1

jLP 3j

� �
þ l1

jjTðKÞ~nKrjjrj
sin hK

sin hK2

jKLj : ð2:27Þ
Under the condition (2.24), it is obvious that there are
AK;r P 0; AL;r P 0:
By (2.20) and (2.25), we have
ðaKAK;r þ jrjbKÞuK � aKAL;ruL ¼ jrjgK : ð2:28Þ
2.4. Special case

Next, we consider the special case of j ¼ kI , where I is a unit matrix.
In this case, when we consider the normal flux through an edge r ¼ K j L (the common side of cell K and L),

the vertical line from the cell center K to the cell-side r will always intersect one of cell-side P 1P 2 of cell K (see
Figs. 2.3, 2.4 and 2.5). The vertical line from the cell center L to the cell-side r will always intersect one of cell-
side P 3P 4 of cell L.

Obviously the unit normal vectors~nKr and~nLr can be expressed by the linear combinations of two unit vec-
tors with direction from the cell center to the cell vertex (see Fig. 2.3, 2.4 and 2.5), that is
~nKr ¼
sin hK2

sin hK

~tKP 1
þ sin hK1

sin hK

~tKP 2
; ð2:29Þ

~nLr ¼
sin hL2

sin hL

~tLP 4
þ sin hL1

sin hL

~tLP 3
: ð2:30Þ
Fig. 2.3. Special stencil 1.



Fig. 2.5. Special stencil 3.

Fig. 2.4. Special stencil 2.
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Similar to Section 2.2, we need only to set jjTðKÞ~nKrj ¼ jkðKÞj and jjTðLÞ~nLrj ¼ jkðLÞj, then we can obtain the
discrete normal flux on edge r of cell K as follows:
F K;r ¼ l1

jkðKÞjjrj
sin hK

sin hK2

jKP 1j
þ sin hK1

jKP 2j

� �
uK � l2

jkðLÞjjrj
sin hL

sin hL2

jLP 4j
þ sin hL1

jLP 3j

� �
uL

� l1

jkðKÞjjrj
sin hK

sin hK2

jKP 1j
uP 1
þ sin hK1

jKP 2j
uP 2

� �
þ l2

jkðLÞjjrj
sin hL

sin hL2

jLP 4j
uP 4
þ sin hL1

jLP 3j
uP 3

� �
: ð2:31Þ
Denote
a1 ¼
kðKÞjrj
sin hK

sin hK2

jKP 1j
uP 1
þ sin hK1

jKP 2j
uP 2

� �
;

a2 ¼
kðLÞjrj
sin hL

sin hL2

jLP 4j
uP 4
þ sin hL1

jLP 3j
uP 3

� �
;

and
l1 ¼
a2

a1 þ a2

; l2 ¼
a1

a1 þ a2

: ð2:32Þ
Then we can obtain the discrete normal flux on cell-side r:
F K;r ¼ AK;ruK � AL;ruL; ð2:33Þ

where
AK;r ¼ l1

jkðKÞjjrj
sin hK

sin hK2

jKP 1j
þ sin hK1

jKP 2j

� �
¼ l1

kðKÞjrj
jKO1j

; ð2:34Þ

AL;r ¼ l2

jkðLÞjjrj
sin hL

sin hL2

jLP 4j
þ sin hL1

jLP 3j

� �
¼ l2

kðLÞjrj
jLO2j

: ð2:35Þ
When uP i P 0 ði ¼ 1; 2; 3; 4; . . .Þ, there are
AK;r P 0; AL;r P 0:
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2.5. The expression of cell vertex unknowns

It is obvious that the coefficients AK;r and AL;r depend on the vertex unknowns, i.e., there are the vertex
unknowns in addition to cell-centered unknowns in the expression of flux. Now we consider how to eliminate
the vertex unknowns locally, or approximate the vertex unknowns by the cell-centered unknowns.

Two interpolation techniques have been considered in [11]. One is the linear interpolation by three
unknown values of cell centers closest to the cell vertex [17]. Another is the inverse distance weighting [21]
of the vertex value uA for all cell K 2 J sharing A as a vertex, i.e.,
uA ¼
X

K2UðAÞ
uKxK ;xK ¼

jxK � Aj�1P
L2UðAÞjxL � Aj�1

;

where UðAÞ is the collection of these cells K that have A as a vertex.
We proposed some other methods of eliminating the vertex unknowns in [20]. Now we describe briefly one

of the methods, which will be used in Section 4. Let
up ¼
Xnp

j¼1

xjuqj
; ð2:36Þ
where qj are the center of cell around the vertex p, np is the number of cell sharing the vertex p, and xj are some
combination coefficients.

When the diffusion coefficient j is continuous, we require that xj ðj ¼ 1; . . . ; npÞ satisfy the following
relation:
Pnp

j¼1

xj ¼ 1;

Pnp

j¼1

xqjpxj ¼ 0;

Pnp

j¼1

yqjpxj ¼ 0;

8>>>>>>>><
>>>>>>>>:

ð2:37Þ
where xqjp ¼ xqj
� xp and yqjp

¼ yqj
� yp ðj ¼ 1; . . . ; npÞ. The linear system associated with this problem reduces

to a under-determined system, we can solve this problem by using the least-squares method (see [20]).
When the coefficient j is discontinuous, we determine the coefficients by the continuity of normal flux and

tangential gradients at the cell vertex(see [20]).
However, the coefficients xj maybe negative, hence it maybe lead to up < 0 even if all uqj

ðj ¼ 1; . . . ; npÞ are
non-negative. In this case we can use any interpolation of preserving positivity, e.g. the inverse distance
weighting method, to guarantee up P 0.

2.6. Discrete system

Substituting (2.12) and (2.15) into (2.16), we get a nonlinear algebraic system. Let U be the vector discrete
unknowns and AðUÞ be the matrix of this system. The matrix AðUÞ may be represented by assembling of 2� 2
matrices
ArðUÞ ¼
AK;rðUÞ �AL;rðUÞ
�AK;rðUÞ AL;rðUÞ

� �
for interior edges and 1� 1 matrices ArðUÞ ¼ AK;rðUÞ for boundary edges. The global discrete nonlinear sys-
tem reads as:
AðUÞU ¼ F ; ð2:38Þ
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where
AðUÞ ¼
X
r2E

NrArðUÞNT
r ; ð2:39Þ
and Nr are assembling matrices consisting of zeros and ones.
The matrix AðUÞ is non-symmetric and has the following properties:

1. All diagonal entries of matrix AðUÞ are positive.
2. All off-diagonal entries of AðUÞ are non-positive.
3. Each column sum in AðUÞ is non-negative and there exists a column with a positive sum.

These properties implies AðUÞ is weak diagonal dominance in column.
The nonlinear system (2.38) may be solved by a number of different methods. Just as [11] we use the Picard

iterations: Choose a small value enon > 0 and initial vector U 0 P 0, and repeat for k ¼ 1; 2; . . . ;

1. Solve AðU k�1ÞUk ¼ F ,
2. Stop if kAðU kÞUk � F k 6 enonkAðU 0ÞU 0 � F k.

The linear system with non-symmetric matrix AðUk�1Þ is solved by the Bi-Conjugate Gradient Stabilized
(BiCGStab) method. The BiCGStab iterations are terminated when the relative norm of the initial residual
becomes smaller than elin.

In our numerical experiments, the Picard iteration always converge, however, the number of nonlinear iter-
ation is excessive. For some stationary problems, the number of nonlinear iteration is over 20. However, the
main issue of this paper is the construction of monotone scheme, and the consideration for computational effi-
ciency is our future plan.

2.7. Monotonicity

In order to show that our schemes are monotone, we introduce the following lemma [3].

Lemma 2.1. For an irreducible matrix A ¼ ðaijÞn�n satisfying aii > 0 (1 6 i 6 n) and aij 6 0 (1 6 i; j 6 n, i 6¼ j),

if A is weak diagonal dominance in rows, that is
Xn

j¼1

aij P 0 ði ¼ 1; 2; . . . ; nÞ; ð2:40Þ
with strict inequality for at least one of the Eq. (2.40). Then the matrix A is an M-matrix.

Now, we state that our scheme is monotone.

Theorem 2.2. Let F P 0, U 0 P 0 and linear systems in Picard iterations are solved exactly. Then all iterates U k

are non-negative vectors:
U k P 0:
Proof. We first prove that the matrix AðUÞ is monotone for any vector U with non-negative components. In
the above section, we have state some properties of matrix AðUÞ. It is obvious that the matrix ATðUÞ satisfies
the conditions of Lemma 2.1, hence ATðUÞ is an M-matrix, that is all entries of ðATðUÞÞ�1 are non-negative.
Since inverse and transpose operation commute, ðATðUÞÞ�1 ¼ ðA�1ðUÞÞT, we conclude that all entries of
A�1ðUÞ are non-negative and AðUÞ is monotone for any vector U P 0.

Noticing that U0 P 0, we assume for some integer k0 > 0,
U k0�1 P 0:
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Hence, the matrix AðU k0�1Þ is monotone, that is A�1ðUk0�1ÞP 0. Also notice F P 0, it follows that the solu-
tion U k0 of AðUk0�1ÞUk0 ¼ F is a non-negative vector, that is
Uk0 P 0:
By induction argument, there are
Uk P 0; for all k P 0: �
3. Extension to non-stationary diffusion equations

Consider following non-stationary diffusion problem:
ut �r � ðjðx; tÞruÞ ¼ f in X� ð0; T �; ð3:1Þ
uðx; tÞ ¼ g on oX� ð0; T �; ð3:2Þ
uðx; 0Þ ¼ uðxÞ on X; ð3:3Þ
where j ¼ jðx; tÞ is a diffusion tensor, f ¼ f ðx; tÞ, g ¼ gðx; tÞ and uðxÞ are given functions.
Integrate (3.1) over the cell K to obtain
Z

K
utdxþ

X
r2EK

F nþ1
K;r ¼

Z
K

f ðx; tnþ1Þdx; ð3:4Þ
where the continuous flux on edge r is
F nþ1
K;r ¼ �

Z
r

jðx; tnþ1Þruðx; tnþ1Þ �~nKrdl: ð3:5Þ
Using the similar process as for stationary diffusion problems, we obtain the finite volume scheme of the
problem (3.1)–(3.3):
unþ1
K � un

K

Dt
mðKÞ þ

X
r2EK

F nþ1
K;r ¼ f nþ1

K mðKÞ; K 2 X; ð3:6Þ

unþ1
P i
¼ gnþ1

P i
; P i 2 oX; ð3:7Þ

u0
K ¼ uðKÞ; K 2 X; ð3:8Þ
where
F nþ1
K;r ¼ Anþ1

K;r unþ1
K � Anþ1

L;r unþ1
L ; r ¼ KjL 2 E int;
and F nþ1
K;r is similar to (2.15) for r 2 Eext.

Let Unþ1 be the vector discrete unknowns and BðUnþ1Þ be the matrix of this system. The matrix BðU nþ1Þ can
be represented by the combination of two matrices B1ðUnþ1Þ and B2ðU nþ1Þ, that is
BðUnþ1Þ ¼ B1ðU nþ1Þ þ B2ðUnþ1Þ:

The matrix B1ðU nþ1Þ may be represented by assembling of 2� 2 matrices
B1;rðU nþ1Þ ¼
DtAnþ1

K;r ðUÞ �DtAnþ1
L;r ðUÞ

�DtAnþ1
K;r ðUÞ DtAnþ1

L;r ðUÞ

 !
:

The matrix B2ðU nþ1Þ is diagonal matrix, and may be represented by assembling of 1� 1 matrices
B2;KðU nþ1Þ ¼ mðKÞð Þ:
The global discrete nonlinear system reads as:
BðUnþ1ÞUnþ1 ¼ F nþ1: ð3:9Þ
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We use the Picard iteration method in Section 2.6 to solve the above system. It is easy to see that the solu-
tion satisfies ðUnþ1Þk P 0 for k and n, provided that f ðx; tÞP 0; gðx; tÞP 0 and uðxÞP 0.

There has no stability constraint for time step due to the implicit time discretion, and our scheme is mono-
tone for any time step Dt > 0.

4. Numerical experiments

We use several numerical experiments to demonstrate that the discretization scheme satisfies the practical
requirements mentioned in the introduction. The convergence rate is studied and the positivity of discrete
solution is verified on different types of meshes.

We use discrete L2-norms to evaluate approximation errors. For the solution u, we use the following L2-
norm:
eu
2 ¼

X
k2J
ðuK � uðKÞÞ2mðKÞ

" #1=2

:

For the flux F, we use the following L2-norm (which is different from that defined in [11])
eF
2 ¼

X
r2E
ðF K;r � FK;rÞ2

" #1=2

:

For the stationary diffusion problems, we take enon ¼ 1:0e� 5 and elin ¼ 1:0e� 10. For the non-stationary
diffusion problems, we take enon ¼ 1:0e� 5 and elin ¼ 1:0e� 15.

The random quadrilateral meshes over the physical domain X ¼ ½0; 1� � ½0; 1� is defined by xij ¼
i
I þ r

I ðRx � 0:5Þ, yij ¼ i
J þ r

J ðRy � 0:5Þ; where r 2 ½0; 1� is a parameter, Rx and Ry are two normalized random
variables. In this paper, we let r ¼ 0:7.

In the following Sections 4.1–4.5, we will use our method of eliminating the cell vertex unknowns men-
tioned in Section 2.5, moreover two other methods are considered and compared with ours in the Section 4.6.

4.1. Positivity of numerical solutions

Let us consider the problem (2.1), (2.2) in the unit square X ¼ ð0; 1Þ2 and set
j ¼ y2 þ ex2 �ð1� eÞxy

�ð1� eÞxy ey2 þ x2

� �
; e ¼ 5� 10�3; ð4:1Þ
and
f ðx; yÞ ¼ 1 if ðx; yÞ 2 ½3=8; 5=8�2;
0 otherwise:

(

We impose the homogeneous Dirichlet boundary condition on oX.
First, we test our nonlinear FV scheme on rectangular meshes and random quadrilateral meshes (see

Fig. 4.1). The exact solution uðx; yÞ is unknown but the maximum principle states that it is non-negative.
The numerical solutions obtained by the MPFA (MPFA-O method in [1]) and our scheme on rectangular
meshes and random quadrilateral meshes are shown in Figs. 4.3 and 4.4, respectively. From these figures,
we see that MPFA produces negative values, however, our scheme preserves the positivity of the continuous
solution. For the rectangular meshes, there are about 13% of all cells on which the numerical solution obtained
by the MPFA is negative. Moreover, for the random quadrilateral meshes, the numerical solutions obtained
by the MPFA has non-physical oscillations.

For the rectangular meshes, the number of nonlinear iteration is 35. For the random quadrilateral meshes,
the number of nonlinear iteration is 40. The computational efficient will be considered in the future.
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Then, we test our scheme on uniform triangular meshes and random triangular meshes (see Fig. 4.2). The
numerical solutions obtained on uniform triangular meshes and random triangular meshes are shown in
Fig. 4.5, which demonstrates that our scheme preserves positivity of the solution.
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6302 G. Yuan, Z. Sheng / Journal of Computational Physics 227 (2008) 6288–6312
4.2. Non-smooth anisotropic solution

Let us now consider the problem (2.1), (2.2) with a non-smooth anisotropic solution. The computational
domain is the unit square with a hole, X ¼ ð0; 1Þ2 n ½4=9; 5=9�2, the boundary oX is composed of two disjoint
parts C1 and C0 as shown in Figs. 4.6 and 4.7, where C1 is the interior boundary and C0 is the exterior
boundary.

We set f ¼ 0, g ¼ 0 on C0, g ¼ 2 on C1, and take the anisotropic diffusion tensor j as follows
j ¼
cos h sin h

� sin h cos h

� �
k1 0

0 k2

� �
cos h � sin h

sin h cos h

� �
; ð4:2Þ
where k1 ¼ 1, k2 ¼ 100 and h ¼ p=6.
We test this problem on two different meshes. One is the random triangular meshes with a hole (see

Fig. 4.6), the other is the random quadrilateral meshes with a hole (see Fig. 4.7), and the scale of mesh is
72� 72. The numerical solutions on random triangular meshes are shown in Fig. 4.8, the minimum value
is close to zero and the maximum value is 1.988. The numerical solutions on random quadrilateral meshes
are shown in Fig. 4.9, the minimum value is also close to zero and the maximum value is 1.981. Hence,
our method obtains the non-negative discrete solutions.
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4.3. Heterogeneous diffusion tensor

In this section we demonstrate that our scheme can handle strong jumps of full diffusion tensor across mesh
edges. Consider the problem (2.1), (2.2) in the unit square X ¼ ð0; 1Þ2 with the source term



'x'

'y
'

0 0.5 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

'u'
1.875
1.75
1.625
1.5
1.375
1.25
1.125
1
0.875
0.75
0.625
0.5
0.375
0.25
0.125

0

0.5

1

1.5

2

0
0.5

1

0
0.5

1'y' 'x'

Fig. 4.9. Problem with non-smooth anisotropic solution with on random quadrilateral meshes with a hole: (a) colormap of numerical
solution; (b) solution profile: (umin ¼ 1:2E� 14; umax ¼ 1:981). (For interpretation of the references in colour in this figure legend, the
reader is referred to the web version of this article.)

6304 G. Yuan, Z. Sheng / Journal of Computational Physics 227 (2008) 6288–6312
f ðx; yÞ ¼ 10000 if ðx; yÞ 2 ½7=18; 11=18�2;
0 otherwise:

(

and the homogeneous Dirichlet boundary condition g ¼ 0.
The domain X is partitioned into four square subdomains Xi; i ¼ 1; . . . ; 4, as shown in Fig. 4.12a. The dif-

fusion tensor is given by formula (4.2) with different parameters k1; k2 and h in subdomains Xi. First, we fix the
anisotropy ratio by setting k1 ¼ 103 and k2 ¼ 1 and vary only parameter h (see Fig. 4.12a). Second, we use
different parameters k1, k2 and h on different subdomains(see Fig. 4.13a). We compute these problems on ran-
dom quadrilateral meshes (see Fig. 4.10), and the scale of mesh is 72� 72. In both cases we get the non-neg-
ative discrete solutions (see Fig. 4.12b and Fig. 4.13b).

4.4. Results on polygonal meshes

In this subsection, we test our scheme on polygonal meshes. Consider the problem in Section 4.1 and use the
polygon meshes shown in Fig. 4.11. The polygon meshes is generated by Voronoi tessellation, and the site
points are centers of random meshes. The contour of discrete solution on rectangular meshes and polygonal
meshes are shown in Figs. 4.14 and 4.15, respectively. We see that the contour on polygonal meshes accord with
that on rectangular meshes. Moreover, the numerical solution obtained by our scheme is non-negative in X.
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Fig. 4.10. Random quadrilateral meshes.
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4.5. Problem with mixed boundary conditions

In this subsection, we consider the diffusion problem with mixed boundary conditions. The equation is the
same as Section 4.1, but with the following mixed boundary condition:



Fig. 4.14. The contour on rectangular meshes.

Fig. 4.15. The contour on polygonal meshes.
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uþ jru �~m ¼ 0 at y ¼ 0; jru �~m ¼ 0 at y ¼ 1;

uþ jru �~m ¼ 0 at x ¼ 0; jru �~m ¼ 0 at x ¼ 1:
We test this problem on random quadrilateral meshes (see Fig. 4.1). The numerical solutions obtained by
our scheme on random quadrilateral meshes are shown on Fig. 4.16. From this figure, we see that our scheme
preserves the positivity for the problem with mixed boundary conditions.

4.6. The accuracy of our scheme

Now we consider the accuracy of our nonlinear FV scheme with three methods (I)–(III) of eliminating the
cell vertex unknowns. The first method (I) is our method described in Section 2.5. The second method (II) is
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16. Solution profile on random quadrilateral meshes for the problem with mixed boundary conditions (umin ¼ 2:13E� 9; umax ¼
).
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the inverse distance weighting method (see [11]) mentioned in Section 2.5. The third method (III) is the simple
weighting method, that is,
xi ¼ 1=np;
where np is the number of cell sharing the cell vertex p.

4.6.1. The elliptic problem

Consider the problem (2.1), (2.2) with Dirichlet boundary condition in the unit square X ¼ ð0; 1Þ2. Let
j ¼ RDRT, and
R ¼
cos h � sin h

sin h cos h

� �
; D ¼

k1 0

0 k2

� �
;

where h ¼ 5p
12

, k1 ¼ 1þ 2x2 þ y2, k2 ¼ 1þ x2 þ 2y2. The solution is chosen to be uðx; yÞ ¼ sinðpxÞ sinðpyÞ:
We test our method (I) on random quadrilateral meshes (see Fig. 4.17) and random triangular meshes (see

Fig. 4.18). Table 4.1 gives L2-norm of the error between exact solution and numerical solution and L2-norm of
the error between exact flux and numerical flux on random quadrilateral meshes. From this table, one can
know that our method gives second-order convergence rate for the solution and the first-order convergence
rate for the flux.
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Table 4.1
Convergence results for the elliptic problem on random quadrilateral meshes (method I)

The number of cell 64 256 1024 4096 16384

eu
2 1.37E�2 2.54E�3 6.61E�4 1.64E�4 3.83E�5

Rate – 2.43 1.94 2.01 2.10
eF

2 1.76E�1 7.11E�2 3.28E�2 1.59E�2 7.91E�3

Rate – 1.31 1.12 1.04 1.01
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Tables 4.2 and 4.3 give the numerical results of the methods (II) and (III). We can see that the error of these
methods are not remarkably decreased as the number of cells is increased. Hence, the methods of inverse dis-
tance weighting and simple weighting fail to convergence as the number of cells is increased, which demon-
strate that the methods of eliminating the cell vertex unknowns will remarkably affect the accuracy of
scheme, and in some cases they lead to convergence failure.

Table 4.4 gives L2-norm of the error on random triangular meshes. It shows that our method (I) also
obtains second-order convergence rate for the solution and first-order convergence rate for the flux on random
triangular meshes.

Tables 4.5 and 4.6 give the numerical results of the methods (II) and (III) on random triangular meshes,
which show that the error of these methods are not remarkably decreased as the number of cells is increased.
Hence, these methods also fail to convergence as the number of cells is increased.

From these experiments, we conclude that our method (I) of eliminating the cell vertex unknowns men-
tioned in Section 2.5 is robust.
Table 4.2
Convergence results for the elliptic problem on random quadrilateral meshes (method II)

The number of cell 64 256 1024 4096 16384

eu
2 1.22E�2 1.46E�2 1.67E�2 1.72E�2 1.74E�2

eF
2 3.66E�1 2.27E�1 2.79E�1 2.71E�1 2.79E�1

Table 4.3
Convergence results for the elliptic problem on random quadrilateral meshes (method III)

The number of cell 64 256 1024 4096 16384

eu
2 3.48E�2 3.26E�2 3.85E�2 3.87E�2 3.88E�2

eF
2 8.09E�1 4.67E�1 6.26E�1 5.95E�1 6.10E�1

Table 4.4
Convergence results for the elliptic problem on random triangular meshes (method I)

The number of cell 128 512 2048 8192 32768

eu
2 1.06E�2 2.23E�3 6.43E�4 1.70E�4 4.48E�5

Rate – 2.25 1.79 1.92 1.92
eF

2 1.27E�1 5.91E�2 2.56E�2 9.36E�3 4.16E�3

Rate – 1.10 1.21 1.45 1.17

Table 4.5
Convergence results for the elliptic problem on random triangular meshes (method II)

The number of cell 128 512 2048 8192 32768

eu
2 1.52E�2 9.55E�3 1.19E�2 1.19E�2 1.20E�2

eF
2 1.35E�1 5.17E�2 4.73E�2 3.18E�2 2.30E�2



Table 4.6
Convergence results for the elliptic problem on random triangular meshes (method III)

The number of cell 128 512 2048 8192 32768

eu
2 3.51E�2 2.08E�2 2.67E�2 2.64E�2 2.67E�2

eF
2 7.14E�1 3.66E�1 5.20E�1 4.95E�1 5.05E�1
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4.6.2. The parabolic problems

Then consider the problem (3.1)–(3.3) with Dirichlet boundary condition in the unit square X ¼ ð0; 1Þ2. Let
jðx; tÞ ¼ 1, f ¼ 0, g ¼ 0 and u ¼ sinðpxÞ sinðpyÞ. The exact solution is u ¼ e�2p2t sinðpxÞ sinðpyÞ.

We test our method (I) on random quadrilateral meshes and random triangular meshes, respectively. Table
4.7 and 4.8 give L2-norm of the error on random quadrilateral meshes and random triangular meshes, respec-
tively. In these computations, we take T ¼ 0:1 and Dt ¼ 1=N , where N is the number of cell. We take this small
time step in order not to affect the spatial accuracy. From these tables, we can see that our method gives sec-
ond-order convergence rate for both the solution and the flux.

4.6.3. Discontinuous coefficient problem

Next, we consider a discontinuous coefficient problem (see [4]). The conductivity j is discontinuous and
given by
Table
Conve

The nu

eu
2

Rate
eF

2

Rate

Table
Conve

The nu

eu
2

Rate
eF

2

Rate
j ¼
j1; x 6 1

2
;

j2; x > 1
2
:

(

We set f ¼ 0 and the exact solution is
uðx; yÞ ¼
aþ bxþ cy; x 6 1

2
;

aþ b j2�j1

2j2
þ b j1

j2
xþ cy; x > 1

2
:

(

This solution and its normal component of flux are continuous at x ¼ 1
2
, while tangential component of flux is

j1c on the left side of the interface and j2c on the right side of the interface.
The numerical experiments use j1 ¼ 4, j2 ¼ 1, a ¼ b ¼ c ¼ 1 and the random meshes shown in Fig. 4.19.

We apply Dirichlet boundary conditions which are directly deduced from the analytical solution.
The calculated isolines of the numerical solution on random meshes are shown in Fig. 4.20. The L2-norm of

error is 9.27E�16. For this test problem, the L2-norm of the scheme in [4] is 2.03E�3 on random meshes
(10� 10), while the asymptotic errors obtained by our scheme are close to zero. Hence, our scheme reproduces
exactly the linear solution.
4.7
rgence results for the parabolic problem on random quadrilateral meshes

mber of cell 64 256 1024 4096

2.30E�2 5.63E�3 1.40E�3 3.53E�4
– 2.03 2.01 1.99
2.06E�1 5.20E�2 1.31E�2 3.39E�3
– 1.99 1.99 1.95

4.8
rgence results for the parabolic problem on random triangular meshes

mber of cell 128 512 2048 8192

2.18E�2 5.32E�3 1.31E�3 3.31E�4
– 2.03 2.02 1.98
2.82E�1 7.12E�2 1.77E�2 4.50E�3
– 1.99 2.01 1.98
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Fig. 4.19. The random meshes with a discontinuity at x ¼ 1
2

(8� 8).
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Fig. 4.20. Isolines for the discontinuous coefficient problem.
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4.6.4. Highly anisotropic tensors problem

In this subsection, we give the convergence analysis of the method for highly anisotropic tensors.
Consider the problem (2.1), (2.2) with Dirichlet boundary condition in the unit square X ¼ ð0; 1Þ2. Let
Table
Conve

The nu

eu
2

Rate
eF

2

Rate
j ¼
k1 0

0 k2

� �
;

where j1 ¼ 10 and j2 ¼ 0:01. The solution is chosen to be uðx; yÞ ¼ sinðpxÞ sinðpyÞ.
We test our scheme on random quadrilateral meshes (see Fig. 4.17). Table 4.9 gives L2-norm of the error

between exact solution and numerical solution and L2-norm of the error between exact flux and numerical flux
4.9
rgence results for highly anisotropic tensors problem on random quadrilateral meshes

mber of cell 64 256 1024 4096 16384

1.20E�2 3.51E�3 1.21E�3 3.12E�4 1.02E�4

– 1.77 1.54 1.96 1.61
8.90E�1 3.13E�1 1.50E�1 6.07E�2 2.77E�2

– 1.51 1.06 1.31 1.13
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on random quadrilateral meshes. From this table, one can know that our method obtains the convergence rate
larger than one and a half-order for the solution and the first-order convergence rate for the flux.

4.6.5. Problem with mixed boundary conditions
Consider the following diffusion problem (see [19]):
1

v
ou
ot
¼ o

ox
D

ou
ox

� �
þ o

oy
D

ou
oy

� �
þ f :
The boundary conditions are that there is zero flux through the top and bottom boundaries and mixed or Ro-
bin boundary conditions on the left and right boundaries:
D
ou
oy
¼ 0 at y ¼ 0; D

ou
oy
¼ 0 at y ¼ 1;

u� 2D
ou
ox
¼ 0 at x ¼ 0; uþ 2D

ou
ox
¼ 1 at x ¼ 1:
The initial condition is uðx; y; 0Þ ¼ 0.
We consider the problem with v ¼ 300; D ¼ 1

30
, and f ¼ 0, which has 1D linear steady-state solution

u ¼ ðxþ 2DÞ=ð1þ 4DÞ. We take Dt ¼ 1:0E� 2, T ¼ 1, and compute this problem on the random meshes
(see Fig. 4.21). The calculated isolines of the numerical solution on random mesh are shown in Fig. 4.22.
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Fig. 4.21. The random meshes (8� 8).
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Fig. 4.22. Isolines on the random meshes.
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The L2-norm of error is 1.51e�15. It obviously that our scheme reproduces the steady-state solution exactly
on this random meshes.

5. Conclusions

The new nonlinear FV scheme that we have constructed for solving diffusion equations is monotone on
star-shaped polygonal meshes. This FV scheme is a development of the scheme proposed in [11]. The construc-
tion of the FV scheme on unstructured polygonal meshes is based on an adaptive strategy of discretization of
flux. The resulting scheme satisfies the practical requirements mentioned in Section 1, without severe restric-
tions on meshes and diffusion coefficients and without a specific definition of collocation points. It follows that
our scheme would be suitable for coupled radiation diffusion/hydrodynamics calculations on polygonal
meshes. Numerical experiments demonstrate the ability of preserving positivity of the new nonlinear scheme
and also show that the convergence rate of the scheme is about the same as that of some known linear FV
schemes.
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